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SUFFICIENT STATISTICS AND UMVU ESTIMATION

• DEFINITION 1 Statistic: A statistic T is a function of observable random variables
(measurements) which is itself an observable random variable, and does not contain any
unknown parameter θ. A statistic is a summary of the data from which we can make inferences
about the joint density of the random variables.

• DEFINITION 2 Sufficient Statistic: A statistic T (z) is defined to be a sufficient statistic

if and only if the conditional distribution of z given that T (z) = t does not depend on θ for
any value t. Note that z contains the measurements, i.e., z = [z(1), . . . , z(N)]T . A sufficient
statistic condenses the data in such a way that no information about θ is lost.

• DEFINITION 3 Jointly Sufficient Statistics: The statistics T1(z), . . . , Tr(z) are de-
fined to be jointly sufficient if and only if the conditional distribution of z given that T1 =
t1, . . . , Tr = tr does not depend on θ. Note that the components of z are always jointly
sufficient (i.e., the conditional distribution of the sample given the sample does not depend
on θ).

• THEOREM 1 Factorization Theorem: A statistic T (z) is sufficient if and only if the
joint density function of z factors as

f(z; θ) = g(T (z); θ)h(z)

where the function h(·) is nonnegative and does not involve the parameter θ, and the function
g(·) is nonnegative and depends on z only through the statistic T (·). Note that there are many
possible sets of sufficient statistics, and that h(·) may be a constant independent of the data
z. This theorem can be used to find sufficient statistics, and it is often easier to use than
Definition 2. In many cases, the resulting sufficient statistics are minimal and even complete
(but not always).

• LEMMA 1: If T is a sufficient statistic and T = H(U) where H(·) is some function, then
U is also sufficient. Clearly, knowledge of U implies knowledge of T . Note that T provides a
greater reduction of the data unless H is 1:1, in which case T and U are equivalent.

• DEFINITION 4 Minimal Sufficient Statistic: A set of jointly sufficient statistics is
defined to be minimal sufficient if and only if it is a function of every other set of sufficient
statistics. Using the notation of Lemma 1, a minimal sufficient statistic can be defined as
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follows: For any sufficient statistic U there exists a function H such that T = H(U). Of all
the sufficient statistics, a minimal sufficient statistic provides the greatest possible reduction
of the data in terms of the dimensionality. For example, a minimal sufficient statistic may
have dimension 1 whereas the original sample may have dimension N .

• DEFINITION 5 Support: The support of a distribution f(x) is the set of all points x for
which f(x) > 0 (strictly positive). The support of a distribution is important when dividing
distributions, such as the likelihood ratio.

• DEFINITION 6 Family of Distributions: A family of distributions is defined as the set
of distributions (possibly uncountable) obtained by varying the parameter θ over its entire
range of values. For example, the set of normal distributions N(µ, σ2) with σ2 known and µ
unknown is a family of distributions.

• DEFINITION 7 Exponential Family: A family of densities f(z; θ) that can be expressed
as

f(z; θ) = a(θ)b(z) exp

(

n
∑

k=1

ck(θ)dk(z)

)

for all θ, and for a suitable choice of functions a(·), b(·), ck(·), and dk(·) is defined to belong to
the exponential family or exponential class. Examples include the gamma, chi-square, beta,
binomial, Poisson, normal, and negative binomial distributions. The uniform distribution is
not an exponential family. Exponential families have the property that there exists a sufficient
statistic of fixed size, regardless of the sample size N . This property is not always shared by
other families of distributions.

• LEMMA 2: A necessary and sufficient condition for a statistic U to be sufficient is that for
any fixed θ and θ0, the ratio T = f(z; θ)/f(z; θ0) is a function of U(z). This result states
that U is a sufficient statistic if and only if T is a function of U , and it follows from the
factorization theorem.

• THEOREM 2: Let F be a finite family with densities f(z; θi), i = 0, . . . , n, all having the
same support. Then the statistic

T (z) =

(

f(z; θ1)

f(z; θ0)
, . . . ,

f(z; θn)

f(z; θ0)

)

is minimal sufficient. Note that the dimension of T may be less than n since some of the
ratios may lead to the same statistic.

• COROLLARY 1: Suppose F is a family of distributions with common support and that F0

is a subset of F . If T is minimal sufficient for F0 and sufficient for F , then it is also minimal
sufficient for F .

• DEFINITION 8 UMVU Estimator: An estimator T ∗(z) of θ is defined to be a uniformly

minimum-variance unbiased estimator (UMVUE) of θ if and only if (i) E(T ∗) = θ, and (ii)
var(T ∗) ≤ var(T ) for any other estimator T (z) of θ which satisfies E(T ) = θ.
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• THEOREM 3 Rao-Blackwell: Let T (z) be a sufficient statistic, and let the statistic T ′(z)
be an unbiased estimator of θ. Define T ∗(z) by the conditional expectation T ∗ = E[T ′|T (z)].
Then, (i) T ∗ is a sufficient statistic and it is a function of T (z), (ii) E(T ∗) = θ, and (iii)
var(T ∗) ≤ var(T ′) for every θ, and var(T ∗) < var(T ′) for some θ unless T ∗ is equal to T ′ with
probability one. This conditioning may improve the estimate, but it does not guarantee that
we will obtain the UMVU estimate – this requires that the statistic T be complete.

• DEFINITION 9 Ancillary: A statistic U(z) is said to be ancillary if its distribution does
not depend on θ and first-order ancillary if its expectation E[U(z)] is constant, independent
of θ. An ancillary statistic by itself contains no information about θ. Note that a minimal
sufficient statistic may contain such ancillary information.

• DEFINITION 10 Complete Sufficient Statistic: A sufficient statistic T that satisfies
the following property is said to be complete:

E[g(T )] = 0 for all θ implies g(T ) = 0.

A sufficient statistic T appears to be most successful in reducing the data if no nonconstant
function of T is ancillary or even first-order ancillary, i.e., E[g(T )] = c for all θ implies
g(T ) = c where c is a constant. The above definition is obtained by subtracting c. Another
way of stating that a statistic T is complete is the following: T is complete if and only if the
only unbiased estimator of zero which is a function of T is the statistic that is identically zero
with probability one.

• THEOREM 4 Lehmann-Scheffe: Let T (z) be a complete sufficient statistic for θ, and
let T ′(z) be any unbiased estimator of θ. Then T ∗ = E[T ′|T (z)] is a UMVU estimator of θ.
Note that this is similar to the Rao-Blackwell theorem except that we are now starting with
a complete sufficient statistic (instead of only a sufficient statistic). This theorem results in
two methods that can be used to find UMVU estimators.
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