ECE 240A Winter 2010 Shynk H.O. #14

SUFFICIENT STATISTICS AND UMVU ESTIMATION

- **DEFINITION 1 Statistic:** A statistic T is a function of observable random variables (measurements) which is itself an observable random variable, and does not contain any unknown parameter θ . A statistic is a *summary* of the data from which we can make inferences about the joint density of the random variables.
- **DEFINITION 2 Sufficient Statistic:** A statistic $T(\mathbf{z})$ is defined to be a *sufficient statistic* if and only if the conditional distribution of \mathbf{z} given that $T(\mathbf{z}) = t$ does not depend on θ for any value t. Note that \mathbf{z} contains the measurements, i.e., $\mathbf{z} = [z(1), \ldots, z(N)]^T$. A sufficient statistic condenses the data in such a way that no information about θ is lost.
- **DEFINITION 3 Jointly Sufficient Statistics:** The statistics $T_1(\mathbf{z}), \ldots, T_r(\mathbf{z})$ are defined to be *jointly sufficient* if and only if the conditional distribution of \mathbf{z} given that $T_1 = t_1, \ldots, T_r = t_r$ does not depend on θ . Note that the components of \mathbf{z} are always jointly sufficient (i.e., the conditional distribution of the sample given the sample does not depend on θ).
- **THEOREM 1 Factorization Theorem:** A statistic $T(\mathbf{z})$ is sufficient if and only if the joint density function of \mathbf{z} factors as

$$f(\mathbf{z}; \theta) = g(T(\mathbf{z}); \theta)h(\mathbf{z})$$

where the function $h(\cdot)$ is nonnegative and does not involve the parameter θ , and the function $g(\cdot)$ is nonnegative and depends on \mathbf{z} only through the statistic $T(\cdot)$. Note that there are many possible sets of sufficient statistics, and that $h(\cdot)$ may be a constant independent of the data \mathbf{z} . This theorem can be used to *find* sufficient statistics, and it is often easier to use than Definition 2. In many cases, the resulting sufficient statistics are minimal and even complete (but not always).

- LEMMA 1: If T is a sufficient statistic and T = H(U) where $H(\cdot)$ is some function, then U is also sufficient. Clearly, knowledge of U implies knowledge of T. Note that T provides a greater reduction of the data unless H is 1:1, in which case T and U are equivalent.
- **DEFINITION 4 Minimal Sufficient Statistic:** A set of jointly sufficient statistics is defined to be *minimal sufficient* if and only if it is a function of *every* other set of sufficient statistics. Using the notation of Lemma 1, a minimal sufficient statistic can be defined as

follows: For any sufficient statistic U there exists a function H such that T = H(U). Of all the sufficient statistics, a minimal sufficient statistic provides the greatest possible reduction of the data in terms of the dimensionality. For example, a minimal sufficient statistic may have dimension 1 whereas the original sample may have dimension N.

- **DEFINITION 5 Support:** The *support* of a distribution f(x) is the set of all points x for which f(x) > 0 (strictly positive). The support of a distribution is important when dividing distributions, such as the likelihood ratio.
- **DEFINITION 6 Family of Distributions:** A family of distributions is defined as the set of distributions (possibly uncountable) obtained by varying the parameter θ over its entire range of values. For example, the set of normal distributions $N(\mu, \sigma^2)$ with σ^2 known and μ unknown is a family of distributions.
- **DEFINITION 7 Exponential Family:** A family of densities $f(\mathbf{z}; \theta)$ that can be expressed as

$$f(\mathbf{z}; \theta) = a(\theta)b(\mathbf{z}) \exp\left(\sum_{k=1}^{n} c_k(\theta)d_k(\mathbf{z})\right)$$

for all θ , and for a suitable choice of functions $a(\cdot)$, $b(\cdot)$, $c_k(\cdot)$, and $d_k(\cdot)$ is defined to belong to the *exponential family* or *exponential class*. Examples include the gamma, chi-square, beta, binomial, Poisson, normal, and negative binomial distributions. The uniform distribution is *not* an exponential family. Exponential families have the property that there exists a sufficient statistic of *fixed* size, regardless of the sample size N. This property is not always shared by other families of distributions.

- LEMMA 2: A necessary and sufficient condition for a statistic U to be sufficient is that for any fixed θ and θ_0 , the ratio $T = f(\mathbf{z}; \theta)/f(\mathbf{z}; \theta_0)$ is a function of $U(\mathbf{z})$. This result states that U is a sufficient statistic if and only if T is a function of U, and it follows from the factorization theorem.
- **THEOREM 2:** Let F be a finite family with densities $f(\mathbf{z}; \theta_i)$, i = 0, ..., n, all having the same support. Then the statistic

$$T(\mathbf{z}) = \left(\frac{f(\mathbf{z};\theta_1)}{f(\mathbf{z};\theta_0)}, \dots, \frac{f(\mathbf{z};\theta_n)}{f(\mathbf{z};\theta_0)}\right)$$

is *minimal* sufficient. Note that the dimension of T may be less than n since some of the ratios may lead to the same statistic.

- **COROLLARY 1:** Suppose F is a family of distributions with common support and that F_0 is a subset of F. If T is minimal sufficient for F_0 and sufficient for F, then it is also minimal sufficient for F.
- **DEFINITION 8 UMVU Estimator:** An estimator $T^*(\mathbf{z})$ of θ is defined to be a uniformly minimum-variance unbiased estimator (UMVUE) of θ if and only if (i) $E(T^*) = \theta$, and (ii) $\operatorname{var}(T^*) \leq \operatorname{var}(T)$ for any other estimator $T(\mathbf{z})$ of θ which satisfies $E(T) = \theta$.

- THEOREM 3 Rao-Blackwell: Let $T(\mathbf{z})$ be a sufficient statistic, and let the statistic $T'(\mathbf{z})$ be an unbiased estimator of θ . Define $T^*(\mathbf{z})$ by the conditional expectation $T^* = E[T'|T(\mathbf{z})]$. Then, (i) T^* is a sufficient statistic and it is a function of $T(\mathbf{z})$, (ii) $E(T^*) = \theta$, and (iii) $\operatorname{var}(T^*) \leq \operatorname{var}(T')$ for every θ , and $\operatorname{var}(T^*) < \operatorname{var}(T')$ for some θ unless T^* is equal to T' with probability one. This conditioning may improve the estimate, but it does not guarantee that we will obtain the UMVU estimate – this requires that the statistic T be complete.
- **DEFINITION 9 Ancillary:** A statistic $U(\mathbf{z})$ is said to be *ancillary* if its distribution does not depend on θ and *first-order ancillary* if its expectation $E[U(\mathbf{z})]$ is constant, independent of θ . An ancillary statistic by itself contains no information about θ . Note that a minimal sufficient statistic may contain such ancillary information.
- **DEFINITION 10 Complete Sufficient Statistic:** A sufficient statistic *T* that satisfies the following property is said to be *complete:*

$$E[g(T)] = 0$$
 for all θ implies $g(T) = 0$.

A sufficient statistic T appears to be most successful in reducing the data if *no* nonconstant function of T is ancillary or even first-order ancillary, i.e., E[g(T)] = c for all θ implies g(T) = c where c is a constant. The above definition is obtained by subtracting c. Another way of stating that a statistic T is complete is the following: T is complete if and only if the *only* unbiased estimator of zero which is a function of T is the statistic that is identically zero with probability one.

• THEOREM 4 Lehmann-Scheffe: Let $T(\mathbf{z})$ be a *complete* sufficient statistic for θ , and let $T'(\mathbf{z})$ be any unbiased estimator of θ . Then $T^* = E[T'|T(\mathbf{z})]$ is a UMVU estimator of θ . Note that this is similar to the Rao-Blackwell theorem except that we are now starting with a complete sufficient statistic (instead of only a sufficient statistic). This theorem results in two methods that can be used to find UMVU estimators.