Department of Electrical & Computer Engineering University of California, Santa Barbara ECE 240A Winter 2010 Shynk H.O. #2

ECE 240A OPTIMAL ESTIMATION AND FILTERING TENTATIVE COURSE OUTLINE

LINEAR MODEL (Lesson 2)

State-space formulation Random and deterministic signals Autoregressive model Moving average model Filtering, smoothing, and prediction

LEAST-SQUARES ESTIMATION (Lessons 3, 4, and 5)

Batch processing Orthogonality condition Singular value decomposition Recursive processing Information and covariance forms Initial conditions

PROPERTIES OF ESTIMATORS (Lessons 6, 7, 8, and 9)

Small-sample properties Unbiasedness and efficiency Cramer-Rao inequality and Fisher's information Large-sample properties Stochastic convergence and consistency Properties of least-squares estimators Best linear unbiased estimation

SUFFICIENT STATISTICS (Lesson A)

Factorization theorem Exponential families of distributions Complete and sufficient statistics Uniformly minimum-variance unbiased estimation

MAXIMUM LIKELIHOOD (ML) ESTIMATION (Lessons 10, 11, and 12)

Likelihood ratio Multiple hypotheses Maximum-likelihood method Log-likelihood function Multivariate Gaussian random variables

MEAN-SQUARED (MS) ESTIMATION (Lesson 13)

Mean-square error Orthogonality principle Conditional mean estimator Nonlinear estimation

MAXIMUM A POSTERIORI (MAP) ESTIMATION (Lesson 14)

Bayesian estimation Conditional likelihood function Detection theory Comparison of ML, MS, and MAP estimation

STATE ESTIMATION (Lessons 15 and 16)

Gauss-Markov random sequences State-variable model Single-stage predictor Innovations process State prediction, filtering, and smoothing

KALMAN FILTER (Lessons 17, 18, 19, 20, and 21)

Recursive estimation Properties of Kalman filter Whitening filter Steady-state Kalman filter Relationship to Wiener filter Smoothing: fixed interval, fixed point, and fixed lag