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HOMEWORK #5

Due Friday, February 19, 2010 (5:00 p.m.)

Reading: Lessons A, 10, and 11

Problems:

1. Problem 9.5

2. Problems A.1 and A.2

3. Let z1, . . . , zN be i.i.d. random variables distributed according toN(0, σ2). Determine whether
or not each statistic below is sufficient for σ2, and rank them in terms of increasing data
reduction. Give your reasoning.
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4. Let z1, . . . , zN be i.i.d. random variables drawn according to the uniform distribution U(θ1, θ2)
where −∞ < θ1 < θ2 <∞.

(a) Show that T = (z(1), z(N)) (a function of the order statistics) is minimal sufficient.
(b) Show that T from part (a) is complete.

5. Let z1, . . . , zN be i.i.d. random variables drawn according to the Poisson distribution with
parameter λ. Use Method 1 and then Method 2 to find the UMVU estimators of the following:

(a) λk (for any positive integer k)
(b) e−λ

6. Suppose that z1 and z2 are independently drawn from a Poisson distribution with parameter
θ. Define the statistic T = z1 + z2. Using the definition of a sufficient statistic (not the
factorization theorem), show that T is a sufficient statistic for θ.
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